1 in 2 of us will get cancer in our lifetime. All of us can support the research that will beat it.
Donate now
Credit: Dale Waterhouse
Our eyes function like a camera, capturing light and sending data for processing and storage.
But as incredible as it is, the eye has its limits. It’s sensitive to three colours – red, green and blue. While this is enough to distinguish everyday objects, it is not enough to differentiate a cancerous cell from a healthy one.
Cameras used by scientists in surgery are limited in the same way.
Now, some of our researchers have developed specialised cameras that can be used to detect cancer cells that can be hard for both surgical cameras and the naked eye to spot.
We spoke to Dr Dale Waterhouse about how this new technology could illuminate the future of the early detection of oesophageal cancer.
What’s the problem?
Oesophageal cancer occurs when abnormal cells in the food pipe, the tube that carries food from your mouth to your stomach, grow in an uncontrolled way.
Around 9,100 people are diagnosed with oesophageal cancer each year in the UK. And unfortunately, many people are diagnosed with later stage cancer, when the disease tends to be more advanced.
But there can be early warning signs, in the form of a condition known as Barrett’s oesophagus. Most people with Barrett’s oesophagus won’t develop cancer, but the cellular changes seen in Barrett’s oesophagus can sometimes develop into oesophageal cancer, giving doctors the opportunity to spot abnormal cells early.
The standard diagnostic tool to detect Barrett’s oesophagus, an endoscopy, involves a long, flexible tube with a tiny camera and light at the end, which passes down the oesophagus.
People with Barrett’s oesophagus will then have follow-up endoscopies every 3 to 5 years, to look for signs of the condition changing.
“An endoscopy looks around the oesophagus using standard white light imaging, which is the same kind of imaging you get in a phone or digital camera. The endoscopist will look for some suspicious signs that might indicate whether Barrett’s oesophagus is developing towards cancer,” says Waterhouse.
Waterhouse explains the challenges that arise using this kind of imaging. “It’s actually quite difficult to see those changes with the standard white light imaging we use, because as you can probably imagine, everything in the oesophagus looks a kind of pinkish-red colour.”
So, the team at the University of Cambridge decided to investigate whether it was possible to increase the sensitivity of the standard endoscopy camera, and by doing so increase the accuracy of detecting when the condition is progressing towards cancer.
A spectral ‘fingerprint’ of cancer

Spectral fingerprint
When light is shone onto tissue, like the inside of your oesophagus, it is absorbed by the different biological components it’s made from. Each of these absorbs different colours and proportions of light. When light leaves the tissue again, it has a distinctive colour composition, which Waterhouse describes as a ‘fingerprint’, which can tell us about the underlying biology.
This unique fingerprint is also known as a spectrum. Just like a fingerprint, the spectrum can be used to identify the tissue that created it, and the spectral fingerprint of cancer is likely to be different to that of healthy tissue.
The special cameras Waterhouse and his team designed were able to reveal this valuable additional information that a typical camera would leave out, using something called hyperspectral imaging.
What is hyperspectral imaging?
Hyperspectral imaging is a technique that analyses a wide and finely sampled spectrum of light instead of just the 3 primary colours (red, green, blue).
“You are able to capture much narrower ‘bands of light’, each collecting a much narrower range of wavelengths, and you take more of those. So rather than 3, you could collect 10s, or even 100s of different colours.”
And detecting more colours means that scientists are able to pick up a more detailed fingerprint.
Hyperspectral imaging isn’t new. This unique kind of imaging has many applications, from observing space through the latest advanced telescopes, to monitoring emissions produced by coal and oil power plants.
“The problem with hyperspectral imaging is we don’t know which of the colours we detect will actually be useful, and no one’s really collected this data in the oesophagus,” explains Waterhouse.
The team set about collecting some of that missing information from the oesophagus. “We needed that data to assess whether there are any spectral differences between the pre-cancerous tissue and the tissue with Barrett’s oesophagus. This will help us determine which of those colours are most diagnostically useful.”
Who, what and where?
The pilot study recruited 20 patients with Barrett’s oesophagus, who would be having a surveillance endoscopy as part of their standard of care. From these 20 people, the team captured 715 spectral images.
“The patients enrolled in the study came in for a standard procedure, and the endoscopist marked two regions. One which they were very sure was Barrett’s oesophagus tissue, and then another region, which they were suspicious about, because they thought it might be early cancer,” says Waterhouse.
“And then we inserted our device through the working channel of his endoscope. The endoscopist then directed that towards these two regions, and we captured spectral information from the tissue.”
Following that, and this is the really important part, the team took biopsies of those same two regions, so that they could get a diagnosis based on gold-standard histopathology.
“And that’s important, because actually, in three of the cases, the initial diagnosis from the endoscopist, was incorrect, which is the challenge we’re trying to solve,” explains Waterhouse. “To be specific, one region the endoscopist marked as healthy was actually pre-cancer, and 2 cases marked as suspicious were actually healthy. This is why matching our spectral data with gold-standard diagnosis from histopathology is so important.”
Significantly, the team found that there are some distinct spectral differences between tissue that was Barrett’s oesophagus, and the tissue that was developing into cancer, publishing their findings in Cancer Research,.
“We did some modelling to find that there are differences in the blood distribution in the tissue between the different disease states, which the camera is able to pick up.”
What’s more, using the results from the spectral imaging, they developed an algorithm to try to tell the two apart. The algorithm had 84.8% accuracy in distinguishing between Barrett’s oesophagus tissue, and tissue that was precancerous, which Waterhouse says “is good compared to the current standard of care and promising for the future development of this tool”.
Looking beyond oesophageal cancer
While Waterhouse and the team were going technicolour, another group was working on new ways to detect oesophageal cancer earlier, using a ‘sponge on a string’. So how does this new research fit in?
“These two technologies, as far as I see them, are very much complementary,” says Waterhouse. “You can screen the general population with Cytosponge, because it’s such a cheap and easy technique that can be done in a GP surgery. And then once you’ve found patients with Barrett’s oesophagus, that’s when they get put into the surveillance pathway.”
But Waterhouse explains how this new imaging technology has huge potential beyond the diagnosis of oesophageal cancer.
“This kind of technology would be useful anywhere that imaging is used,” he says. “It could be used in the lower gastrointestinal tract to detect precancerous lesions, or polyps, in the bowel.”
Beyond detection, these cameras could also be utilised in surgery. The idea would be that the cameras could detect, real-time, whether there was any residual cancer during the operation.
Up next for the team, a number of researchers are looking to build a second, improved prototype of the camera, “one with higher resolution and potentially one that detects more colours”. Waterhouse himself has turned his attention to glioma – a type of brain tumour – and using the same camera to assist in open brain surgery at the National Hospital of Neurology and Neurosurgery and the Wellcome / EPSRC Centre for Interventional and Surgical Sciences.
While it’s still early days, there’s huge scope for this exciting technology. The sky’s the limit for Waterhouse and the teams at the University of Cambridge and UCL.
Comments
Barry Hatcher January 3, 2022
This is great news . I have Barratts so this gives me hope for the future and that cancer can be diagnosed more quickly and easily .
Lynn Richardson January 3, 2022
Glad to see progress into oesophageal cancel. I lost my husband in 2018, due to late detection he was stage 4 before diagnosis
Matilde January 2, 2022
Thanks research for oesophageal cancer need more researches like this as there is little tools to detect it in the early stages, normally it is detected when is too late to save the person’s life. The way a person died is hearbreaking certaintly is one of the types of cancer super aggressive and there is little treatment.
Please. Could you comment in your article when this new tools would be available in GP’s or hospitals.
Warren Glew January 2, 2022
Such fantastic developments. My dad thankfully survived oesophageal cancer 2 years ago and these new methods will hopefully catch more early warning signs.
Lynne Isherwood January 1, 2022
Congratulations to everyone involved in the research into oesophageal cancer.My beloved husband died of this terrible disease and it is wonderful to think that lives will be saved in the future.
Kate Taylor January 1, 2022
Fascinating, the more we can discover about Cancer the better.
Anne M Wigg January 1, 2022
Groundbreaking research. Keep up the amazing work.
Tom Lanham December 31, 2021
Approximately 295000 souls passed away from cancer in England and Wales in 2019/20 (ONS figures). Many more than COVID. I believe we are loosing focus on cancer diagnosis and treatment at our peril. I fear a Tsunami in the next few years.
Karen Walker December 31, 2021
This makes interesting reading, and thank goodness for the researchers doing such marvellous work into oesophageal cancer. Unfortunately my father was diagnosed in March at a very late stage and is currently receiving palliative care, whilst I was diagnosed with Barrett’s just a month later. I will be watching for the further research with interest.
Jean December 31, 2021
This is fabulous news. Sadly, my husband was diagnosed with oesophageal cancer in late 2006, and his lost his battle in June 2007. This would have undoubtedly given him some extra quality time. Please keep up the marvellous work you clever people – then maybe others won’t have to go through what he endured so very bravely. Thank you all!
Peter Hall December 30, 2021
My father had a series of sore throats and died of oesophageal cancer in 1986, just six months after diagnosis and one month to the day after his 67th birthday. So sad to see a very decent gentleman sink so rapidly and pass away. It highlights the importance of cancer research and not to ignore symptoms. Be aware of warning signs – it may save your life!.
Susan Baker December 30, 2021
This is brilliant news😁
Clare Dixey December 30, 2021
Fantastic to see some progressive research for oesophageal cancer. I lost my dad to an aggressive form of this cancer. Early detection is absolutely critical for this cancer as for many like my beloved Dad late detection was sadly meant his fate was sealed. I’d like to understand whether this is hereditary and if I should be getting checked for Barret’s. I know when I discussed with the GP they advised that it was the causation was diet think it’s time for me to start investigating.
Emma Eaton December 30, 2021
keep up the amazing work xx
Alruna Genty December 30, 2021
Thank you to the amazing researchers who work so hard to find ways to control cancer.
John Taylor August 25, 2021
This is amazing news for people like myself who have Barrett’s oesophagus, keep up the great work.
ANNE BENTLEY August 24, 2021
Really interesting progress. My partner was diagnosed with oesophageal cancer only when it was too advanced for anything other than palliative treatments. Hopefully these new techniques will benefit many in the future.
Christopher Taylor August 23, 2021
Fantastic research – I have Barret’s oesophagus, and hopefully this research will benefit people in my position. I have check ups every 2/3 years and I look forward to the day when this technology is is general use. Please keep up the good work.
Gower Tan August 23, 2021
Absolutely brilliant research
Jeanne August 23, 2021
Brilliant work. A real “breakthrough “
Leonard Codling August 22, 2021
This is absolutely marvellous, just shows what can be done with our donations.
Great credit to those pioneering this.
Wendy Wood August 22, 2021
This is a very encouraging read. I was diagnosed with Barrett’s in 2017 and feel very fortunate I am now monitored on a regular basis. It would be lovely to think that in the future many more Barrett’s cases are picked up in order to prevent the development of oesophageal cancer
Geoff Heath August 22, 2021
On reading these emails I always experience the same feelings. Amazed, humbled and grateful that these scientist and doctors are involved in such difficult and ever changing research.
Richard Ansell August 21, 2021
I was diagnosed with oesophagus cancer in February last year after endoscopy couldn’t feel a thing . I had 4 sessions of chemotherapy then surgery and 3 more sessions of chemotherapy . I am in remission at present this new method sounds good
Christine Yeomans January 7, 2022
When will this new way of checking people with Barratts be widely available please?