Skip to main content

Together we are beating cancer

Donate now
  • Science & Technology

Stitching together a ‘Google Earth’ for cancer

by Ethan Meyers | Analysis

14 February 2019

14 comments 14 comments

Our Grand Challenge scientists are using their expertise in measurement to draw a new map of cancer.

In south west London, on the edge of Bushy Park, is a building whose occupants are responsible for measurements. Precise measurements, to be precise. The building is the gatekeeper of time, the resting place of the kilogram, and home to the scientists responsible for making sure the National Lottery balls are exactly the same.

This building is the National Physical Laboratory (NPL). It’s the UK’s National Measurement Institute, and for the last 18 months, a team of scientists there have begun turning their precise eyes on cancer.

As part of our Cancer Research UK Grand Challenge programme, we’ve funded scientists from NPL to measure molecules inside tumours. They plan to collect this information together, from thousands of samples, to produce a complete ‘Google Earth’ for cancer.

Professor Josephine Bunch is the faculty director at NPL’s campus in Teddington, where she oversees the monumental task that’s still getting up and running.

“The aim of our project is to examine what’s going on within cells of tumours to understand how we can better treat them,” she says.

And since our last visit to the lab, the team has been busy. They’ve now shared with us an early glimpse of 3 stages of the 3D chemical map that they’ve started to draw out.

New layers of detail 

The team plans to produce images of tumours at previously unseen levels of detail. They aim to catalogue the chemicals of thousands of tumours, moving from the surface to deep inside individual cells.

Zooming in to this level, and looking at the chemicals on the inside of single cells, means the common microscope has to make way for some more specialised equipment.

“Microscopes have really helped us understand enormous amounts about cancer and tumours,” says Bunch. “But unlike our instruments, they can’t produce an image in enough detail at such a small scale.”

“The instruments we’ve built let us see all of the molecules inside a single tumour cell at once.” 

Using molecular weighing scales 

The instruments Bunch and her team use to image tumours rely on something called a mass spectrometer. 

Mass spectrometers are like molecular weighing scales. As most molecules in our body have a specific weight, if we can weigh them, we can identify them. 

NPL has a range of mass spectrometers that weigh molecules at different levels of detail, like zooming in on a map. 

“We have been operational for about 18 months. We have used this time to optimise how we use these instruments and we have collected a whole range of quite precious samples,” says Bunch.

With the instruments now fully operational, the team can begin taking us from the whole tumour to the inside of a single cell, much like Google Earth can navigate the globe from your phone.  

Cityscape: the tumour surface 

The first images cover a large area of the tumour’s surface in less detail, as if you’re observing a cityscape from high above. This maps out the surface of the tumour sample, giving a good overall first impression of the molecules that are there.

The cityscape: This image shows 3 slices of a tumour sample. The colours represent the different chemicals that are detected on the surface, which helps the scientists identify areas of interest.

“The goal here is to gently pick up molecules from the tumour’s surface by spraying water at it,” says Bunch. “Some of the droplets bounce back with molecules from the tumour on it, and we can then measure them.” 

This technique is important because it doesn’t take long to capture an image of one piece of the tumour, called a section. “We can look at lots of sections of a tumour and obtain images in less than an hour,” says Bunch.

The team detects and locates hundreds of chemicals at a time, helping them identify areas of interest. But this machine can’t zoom in further to examine these patches at ‘street view’.

Street view: a closer look

A second machine uses a laser to home in on the areas of interest and identify molecules inside the tumour cells. But with a lot more information to collect, this step takes time.

Street view: After identifying areas of interest, the researchers use a different machine to take a more detailed look. The colours in this image show areas of the tumour that are similar based on the molecules that are measured. Professor Josephine Bunch, NPL

“For this technique it probably takes several hours to produce a map of one single tumour,” says Bunch, adding that this machine is great for“bridging the gap” between viewing the whole tumour and mapping individual chemicals inside the single cells.

Inside houses or single cells 

The final piece of the map comes from a third machine, which detects specific molecules.

“This method is quite different to the others,” says Bunch. “We are not measuring hundreds of thousands of molecules in every location, like before. This time we have chosen what we are looking for using a chemical label.”

House view: In this image, the scientists are looking for a specific chemical that they have selected, based on the first 2 images. They are looking for the activity of that chemical within the cells of tumours to try and understand what its function is. Professor Josephine Bunch, NPL

Pictures from this instrument give the fine detail. The machine looks at the activity of specific chemicals inside tumour cells by sticking a radioactive flag to them. The radioactive flag doesn’t disturb what’s happening inside the cell, but it does make it traceable by scientists.

Bunch and her team are using this machine to peer inside cancer cells and find out how they work.

“Really,  we want to stop tumours receiving food and being able to use it,” says Bunch. “If we can understand how they use and make energy differently compared to normal cells we can develop drugs that might stop their energy processes happening. Then we will be better at treating cancer.”

Stitching the map together

“We are the only lab in the world that brings all of the different imaging techniques together,” says Bunch.

Now the team intend to repeat these 3 techniques, along with four others, thousands of times, on many different types of cancer.

Molecule by molecule, pixel by pixel, these chemical maps will eventually be stitched together to produce an overall ‘Google Earth’ of the tumour. 

Why do we need a map of cancer?

Bunch believes their cancer maps can be used in a variety of ways. “We are already working with people who develop drugs to understand the different regions in tumours and why some drugs get to the location you want them to and others don’t,” she says.  

And since the Grand Challenge project began, they’ve started mapping bowel, pancreatic and breast cancers, as well as a kind of brain tumour called glioblastoma.

Bunch and her team say that it’s thanks to patients who’ve donated their tumour tissue after surgery that these maps are starting to take shape.

“Without these kind donations, we simply wouldn’t be able to produce these chemical maps or understand tumours in this level of detail.”

Ethan


    Comments

  • Janis Stock
    13 March 2019

    Truly amazing. Our scientists and their technology are brilliant.

  • Barbara Eagles
    12 March 2019

    Absolutely fantastic. Have had cancer twice and I am so grateful for all you do to try and reduce the number of people contracting cancer and to early diagnose it to save a lot more lives. Thank you for all you do to achieve this aim really much appreciated

  • Mark Avery
    12 March 2019

    Breathtaking work! I wish you the best of success!

  • Brian
    11 March 2019

    Facebook offered to donate £1 to a charity of my choice and set up a fundraiser for my birthday. My charity was for The Pancreatic Research Fund. So far the fund is at £1360 and is ending soon. It’s good to know how the money raised is being used.

  • Owen
    11 March 2019

    wow! fantastic! another step closer to beating cancer! well done! keep up the good work! youre all amazing!

  • Sandra
    11 March 2019

    May you be applauded for your work and one day cancer will be gone – all because of you wonderful research scientists – keep up the excellent work

  • Linda Hoeft
    11 March 2019

    Marvellous. It’s goid to see how our donations are being used.

  • Neil Hutton
    11 March 2019

    Very interesting. Keep u 07807966598 pthe good work! X

  • paul warren
    11 March 2019

    well done but need too prove still lot people getting cancer

  • Angela Sedgwick
    10 March 2019

    This is amazing what you are doing and I will coninue sending my small donation while I am able to, sorry I cannot ncrease it, but I will send an occasional 1 off donation to boost whem I have little to spare. All good wishes for your wondergul work. Most sincerely Angela Sedgwick.

  • Shirley Murray
    9 March 2019

    This is so incredibly clever. I am in awe. Thank you to all you dedicated, bright oncology scientists, striving to do the very best to track and beat all cancers.

  • Valerie Phelps
    9 March 2019

    Amazing news and if these areas can be identified early we will be able to manage it and in time see the amazing changes in cancers of the lungs and brain being researched in a far better way to try and stop so many deaths from this deadly cancer. This work is so vital and important to all as even if it does nothing now what a huge step for our children, grandchildren and great grandchildren giving them the hope of a better and longer life. It is with great admiration for these dedicated and amazing people I am proud to write this.

  • Brian Hands
    8 March 2019

    Great News! Once the radioactive flag has been successfully identified for every specific types of cancer, would it then be possible to use gene therapy to indict which particular gene is evident in every specific type of cancer, and hopefully, then develop and apply the necessary therapeutic means of eradicting cancer in it’s entirety? I do so hope so!!

  • William Dawson
    8 March 2019

    Staggering detail and innovative approach

    Comments

  • Janis Stock
    13 March 2019

    Truly amazing. Our scientists and their technology are brilliant.

  • Barbara Eagles
    12 March 2019

    Absolutely fantastic. Have had cancer twice and I am so grateful for all you do to try and reduce the number of people contracting cancer and to early diagnose it to save a lot more lives. Thank you for all you do to achieve this aim really much appreciated

  • Mark Avery
    12 March 2019

    Breathtaking work! I wish you the best of success!

  • Brian
    11 March 2019

    Facebook offered to donate £1 to a charity of my choice and set up a fundraiser for my birthday. My charity was for The Pancreatic Research Fund. So far the fund is at £1360 and is ending soon. It’s good to know how the money raised is being used.

  • Owen
    11 March 2019

    wow! fantastic! another step closer to beating cancer! well done! keep up the good work! youre all amazing!

  • Sandra
    11 March 2019

    May you be applauded for your work and one day cancer will be gone – all because of you wonderful research scientists – keep up the excellent work

  • Linda Hoeft
    11 March 2019

    Marvellous. It’s goid to see how our donations are being used.

  • Neil Hutton
    11 March 2019

    Very interesting. Keep u 07807966598 pthe good work! X

  • paul warren
    11 March 2019

    well done but need too prove still lot people getting cancer

  • Angela Sedgwick
    10 March 2019

    This is amazing what you are doing and I will coninue sending my small donation while I am able to, sorry I cannot ncrease it, but I will send an occasional 1 off donation to boost whem I have little to spare. All good wishes for your wondergul work. Most sincerely Angela Sedgwick.

  • Shirley Murray
    9 March 2019

    This is so incredibly clever. I am in awe. Thank you to all you dedicated, bright oncology scientists, striving to do the very best to track and beat all cancers.

  • Valerie Phelps
    9 March 2019

    Amazing news and if these areas can be identified early we will be able to manage it and in time see the amazing changes in cancers of the lungs and brain being researched in a far better way to try and stop so many deaths from this deadly cancer. This work is so vital and important to all as even if it does nothing now what a huge step for our children, grandchildren and great grandchildren giving them the hope of a better and longer life. It is with great admiration for these dedicated and amazing people I am proud to write this.

  • Brian Hands
    8 March 2019

    Great News! Once the radioactive flag has been successfully identified for every specific types of cancer, would it then be possible to use gene therapy to indict which particular gene is evident in every specific type of cancer, and hopefully, then develop and apply the necessary therapeutic means of eradicting cancer in it’s entirety? I do so hope so!!

  • William Dawson
    8 March 2019

    Staggering detail and innovative approach